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Abstract

In this report we study the effects of the non-linearities

in the dispersion and attenuation of longitudinal waves in a plasma.

We first work with the hydrodynamic equations and show that to a

first approximation non-linearities affect the dispersion equation.

We then work with the Boltzmann-Vlasov equation and indicate a

general method for the study of the effects of non-linearities. Be-

cause of mathematical difficulties, we develop a hybrid formulation

which is based on both the hydrodynamic and the Boltzmann-Vlasov

equations and indicate that to a first approximation non-linearities

affect both the dispersion equation and the attenuation in a plasma.
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I. Introduction

By linearizing the Boltzmann-Vlasov (B-V) or the hydrodynamic (H)

equations that describe the longitudinal properties of a plasma, in effect we

disregard interactions between modes of vibration in the system. If accounted

for, these interactions could lead to attenuation of an excitation (density wave)

in the plasma in addition to the attenuation due to collisions or to Landau damp-

ing; they could further lead to a modification of the plasma dispersion relation

which, in the linearized case, is given by

2 2 k2
W = W + (3KT/m)k ;(B-V) (1)

p

W= , (H) (2)

The added attenuation can be attributed to the energy lost by a propagating den-

sity wave for the excitation of harmonics. On the other hand, the modification

of the dispersion relation can be attributed to a correction of the longitudinal

dielectric coefficient of the plasma because of non-linearities.

Some attempts have been made in the last few years to study the non-

linear effects in a plasma in equilibrium described by the Bolt zmann-Vlasov

equationl, 2, 3). The little progress made consists perhaps in the realization

of the mathematical and conceptual difficulties, but has added no new insight

to the problem. In the present paper we make a renewed effort to understand

the problem by attempting to describe the non-linear effects as a scattering

process. In Sec. II we limit the discussion to the hydrodynamic model in order

to keep a simple mathematical structure. We are aware that the hydrodynamic

model is inadequate for large wave numbers k because it does not account for



the interaction of the collective mode with the free particles (leading to Landau

damping). Although this shortcoming does not affect the validity of our method,

it does cast some skepticism on the accuracy of the results. In principle, the

method can be generalized to treat the Vlasov plasma. This generalization is

developed in Sec. III.
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II. Non-Linear Hydrodynamic Equations for a Plasma

We use the following set of equations to study the non-linearities in
(4)

a homogeneous model of a plasma :

(a) Continuity Equation:

n(xt) + V- n(t) V (xt)] = 0 (3)

8t x

(b) Equation of Motion:

aV( t) + [V( t) " V-] V (t) + -e V (;t) = 0 (4)

(c) Poisson Equation:

V 24(xt) = -47regn (xt) (5)

The charge of the electron has been taken as -e, and the mean electron density

n is assumed to be neutralized by a positive sea of ions. 6n(Rt) is the excess

density at a point x and time t and therefore

n(xt) = n o + gn(xt) = n o {I +Sn(xt)} = n {I + 4( t)}
0

In terms of i(xt), Eqs. (3) and (5) become
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_---_ + v- V(xt) + V- [4(xt) V (xt)] = 0 (3a)

V 2(t) = -47renop( t) (5a)

By taking the Fourier transforms in time and space of Eqs. (3a), (4), and (5a),

we obtain

-iW (fcw) + ilk" V(Y.W) + i' f W '')?l -,') d:' dw"I=0 6

(27)

-iwV(R°) + i-k -(k) + if((-iK') •(IZ-k',oW- I) dkld' - 0 p,
m ~(2r) 4

-k 2 (k)+ 4renoh(w ) = 0 ,(8)

where the quantities in the integrals represent the non-linear contributions.

The linearized version of the hydrodynamic equations have the form

-iw (kw) + ik V(IEw) = 0 (9)

-iWV(kW) + ik- - 4 (iTw) = 0 (10)

-k (Rw) + 4 7r enoLb(1[w) = 0 (11)
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and yield after some trivial substitutions

2
kZ~ -{1 -w (-kw = 0 (12)

2 Wp

Equation (12) can be interpreted either as the source-free Poisson equation in

matte r

k e L(c) (Kw) = 0, (13)

L.
where c is the longitudinal dielectric constant, or as the solution of the second

order differential equation

2
S(xt)W (xt) = 0

i. e., the oscillator equation for the hydrodynamic oscillations in the plasma.

Returning now to the non-linear equations, we first solve Eq. (6) for g$w) and

substitute the value of V(kw) from Eq. (7) to obtain

-p(k(w)k)+4 fk" V(k-k',--T')(-k')" '+

mW Wo (2w)

+ K-f. V , (K-k,,w-,)d (14)
(A) (27r) 4

Further substitution of Eq. (14) in the Poisson equation finally gives
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S 2 47r en
k 2 { I- P }--- f V (k-k', - ')(k-k'). V (k'w')

W 2W (2W)4

47r en dk' dw'f (2.wo)4 (15)

To bring Eq. (15) in a more lucid form, we substitute the V's inside the integrals

with their values given by Eqs. (6) and (7). Thus

2 47r en -

k2 { 1 -- 0} (k)=( - 2 -o f k. (-k . -- dk'd.k. 2, (M 2 ' W- ' W1 ' =
2 m (2'r)

2
4ire. n _ -" k

+m fk' * (k, ) (kk,,k _,) dk'd' (16)W(2?r )3 (6

The terms that have been neglected could be further reduced by successive

substitutions to give higher order terms; however, the algebra is prohibitive.

In any case we can clearly see that Eq. (16) is an integral equation for the

potential 4 (kw) and its right-hand side could be interpreted as a source term

for the Poissonequation in matter, i. e.,
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2
Wk2 {l - - €-} (kw) = 4v p(kw) (17)

Our problem now is to find a solution for the integral equation. Since p(kEw) is

expected to be a small quantity, it becomes obvious that we should seek solu-

tions close to the ones given by the linear hydrodynamic model. According to

the model, density oscillations in the plasma can occur at only one frequency

w and at an arbitrary wave number k. We know, however, from the solution

of the B-V equation that this is only approximately true; i. e. , the oscillation

frequency is given by w = p, k) except in the limit of k - 0 where w = W .

Selecting therefore an arbitrary but small wave number kp, we assume that at

a first approximation the potential in the hydrodynamic case is given by

(kw) = Yo (2r)4 S(k-kp )6(o-w p) , (18)

where 4o is the amplitude of the potential. However, the integral equation 16

expresses the fact that if non-linear terms are accounted for there are contribu-

tions to the potential from all k' and w'. Stated another way, non-linearities

produce a slipping of the frequency and wave number, a process very similar

to incoherent scattering. In fact, if a plasma oscillation is to be viewed as a

density wave propagating in the plasma, then it becomes clear that it can be

scattered out of the direction it is propagating. As the wave is scattered out

of the forward direction it loses a part of its energy. As a first approximation

we assume the attenuation to be small and separate 4(kw) in two parts: the

coherent part consisting of the propagating density wave at w p - kp, and the

incoherent part ()():

p(kw) = ,(Z7 )4  K( -) £(W-Wp) + (1)OKW) (19)
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We introduce now Eq. (19) in Eq. (16) and obtain

2 2

k 2 0p (27r) (W- - ) S(Rl-Il) + k' (1- - ,) W" A -( ) (0

2

p p (27r)

2
Wk'k' , ( ) - ,dk'dw' f(0

+= f wk' (k')(k-k W-W) + Or" (20)
W W1 (27r)4(0

where Tconsists of terms contributed by the first integral in Eq. (16). We can

see by inspection that these terms are both small (since they are proportional

to 0 , 4(l)40  and 4()4#(1 )) and incoherent with respect to 4#0 and 4(I)(kw). We

will therefore neglect them. From Eq. (20) we clearly have

2 2

k2 2J)(1(i ) 4u-k" (li- T)4 = 4# - .~ #(- , -wp

(0 20 p p

_2 - . P P (21)
o W p n0
=-040

and therefore

= p p (22)
k ( p o

where the division by o -wp will be interpreted as follows. We first expand

1 1 1 1

2 p p W+ p

and then write
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lim 1 (5 I, 7 wi6(W-) (23)cr0 W - p C p
-1

along with a similar expression for (w+w p) This corresponds to the

assumption of a negligibly small loss term in either the dielectric constant

E(w) or the equation of motion for c(xt). Inserting Eq. (22) back in Eq. (20),

we obtain

k 2E(W)o(22r )£4(W-wp)(k.-kp=

W (k k')(k. k p) 2 w &n(k'-kp, W - p) n(k-k',. w-') dk'dw' (24)

p 0

This equation can be interpreted as an equation describing the scattering of a

coherent density wave at w p, kp from density waves traveling at directions k'

and frequencies w'. It is clear that the density deviations 6n('-kp, , w-W P

n(k-k', w-w') inside the integral of Eq. (24) represent density waves with

respective wave numbers and frequencies k'-k p, w-w p; k-k', w-w'. However,

it is also clear from the left-hand side of Eq. (24) that we are interested in

the case where k = k p W = W p, i.e. , in the forward direction. (See Fig. 1.)

' K -k

p

Fig. 1 Density Waves
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This corresponds to imposing the conditions*

(T' - K__p +(K - kP ) -- 0 i.e., F =R (25)
P p

(- w + (W - W') = 0 i.e., w = p(26)

Taking now the average on both sides of Eq. (24) and noting( 5 ) that

(P -p , -(-KI, w-w'1 --If ) < p gn!'-I, w'-w pp p lw - p

and that < 0> = 0o, we derive from Eq. (24)

k 2 [ (w) +$ e(kw)] (27r )4 co, S(K-kp ) 6(W-W ) 0

where W (kp - , k )z 2 < I 6n(k'- , w' -w )12 _kI
= -I ._2 f 2 2 n 2 p) > dp'd4 (27)

k W k' z -W no (27r)
p 0

where now <16n1 2 > is the mean square fluctuation of the density. We note

that we cannot derive information concerning the amplitude of plasma oscilla-

tions from the hydrodynamic or the B-V equations. Nevertheless, it is the

thermal motion in the microscopic scale that initiates the plasma oscillations

in the macroscopic scale and therefore the amplitude of the oscillations can

only be derived from thermodynamic reasoning. Appendix A is devoted to the

evaluation of the fluctuation spectrum of a hydrodynamic plasma by making use

of Nyquist's theorem. We find that

- If instead of density waves we were to consider particles, Eqs. (25) and (26)
would represent momentum and energy conservation.
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k2.A2 
C P

< 2> = n no DZA -- {8(w-wp) - 8(W+)p (28)

where XD is the Debye length. Since the fluctuation spectrum has just two

lines at ± w and no width, we are entitled to call the fluctuation a plasma
p

oscillation. The fluctuation spectrum derived from the B-V equations has a

finite width which, in effect, corresponds to Landau damping ; however, we

can readily show that in the limit of kA D -0 0, the B-V spectrum is again given

by Eq. (28). With the available information we can now compute the correction

to the dielectric coefficient E(TRw). Calling

86 + c.

K=k' K , , = - ,
p P

and using Eq. (23), we obtain

2 - 2
I p .- I <I 2nl -1 > dkdw (29)i W- f ,2 - (" W WI + ) 4 29

k kI p p n (27r)

1 2 (,. )2

1T +k' 2  (-)-9(WI+)] < Ln(K'f) 2> d1E'dw' (30)
k no (27r

whe re

< nn(,)k2 > = n(-kp)2 - +(i(O'-2w )-i(w')} (31)
pp

Explicitly we have for cSE'

(k, k) 2(KIk)2  2
p dk' D 2 Wp

k2k' (27r) o 3

2

= g(k) D P 32)
0

where g(k) is the value of the integral between 0 and some k .
11 max



The dispersion equation then becomes

2 2E+ ' = o0 1 ---- + g ( P

(.0 0

which gives

N 2D wp 2

22 A2 ) D

2 - D - -

p 3 n 0

2
~02 AD 2

p-g(k) 3 rn p

2 - KT 1 (33)=op -gk(m 3n° (3

This implies that the frequency decreases because of non-linearities. As a

result the group velocity

E)W
Vg =

becomes negative. If, however, the vector k' in Fig. 1 were to be reversed,

the sign of g(k) in Eq. (33) would also reverse and in this case

2 2 KT 1

p m 3n°

As a result v > 0.
g

From Eq. (30) we find that 6c" = 0. As a consequence and to the

approximation we are using, there is no attenuation in the propagating density

wave. In conclusion we may say that, to first order, non-linearities affect

only the dispersion equation.
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III. Non-Linear Vlasov Equation

As mentioned in the previous section, the hydrodynamic model of

the plasma is inadequate in the sense that it does not give a dispersion re-

lation and a damping term in the linear approximation. It becomes therefore

necessary to study the non-linear Vlasov equation in order to obtain a cor-

rection to the dispersion relation and to the damping. We outline here the

method that could be useful in a program of this nature. However, we do

not attempt to give an answer to the problem because the equations turn out

to be very involved. Instead we use some of the results to improve the

corresponding hydrodynamic formulation. Vlasov' s equation for the dis-

tribution function f(i'_t) has the form

afe
at- + v" V- f+ -- V * Vv f = 0 (34)

while the Poisson equation for a neutralized electron plasma is

V2€ = 4re fl (i't) dV (f = f + f 1 ) (35)

Fourier transformation in space and time of both equations gives

(-iw + ' ) fl(Rw ,) +i S . V- f(k)

e - K'd d -0

k (ow) - 4re fll o[,) d

Solving for f (kcRv we obtain

f 1(RkoV) =

R. V--f RV- " -, a0 ' r l' dwo'
e v 0 (R00) + vi('°) 2r7 (36)

m co1.€m o - R. V (7r

13



We integrate Eq. (36) over v and insert in the Poisson equation

S 4re . V-f
k 2 [1 + 2 0w

mk

47re z  (k 'w') ' v~ - ' I -" di 'dw' d
m -k. v (2 7

The quantity in the square brackets is by definition the longitudinal dielectric

coefficient E (kC), and therefore, we can now write the equivalent of Eq. (16)

2~L~2k1'V-f (k-k", -c&,v) dk'dco'
k 2 (kw)4(kw)= 4Te (k'') v _-.. dv. (37)

m w-k" v (27)

4r p (kw)

Equation (37) is an integral equation for (kw), and it represents the same

physical problem as the equivalent hydrodynamic equation. It presents,

however, a mathematical problem of larger complexity because of the

denominator (w-k" v). To bring Eq. (37) in better correspondence to Eq. (16),

we write

Ck'*V f I(k, tLv-) k dv f k.rvw -k. 7 (W_ .V) 2

It then becomes obvious that for k - 0 we obtain Eq. (16). To proceed from

Eq. (37) we could use an iteration procedure, or we could write as in Section 2

(kw) = (22r)4 6 (j-p)6 (w-p) + (Iw) (38)

2 2 2 2 2 2with w W + (3 KT/m)k = W p +v k .
4p p 0

14



Then

k2 eL (kw) 0o(27r ) 4 (Rp) (_p ) + k 2C L( ) ( )

4.e 2  v f 1 (k-k, -p
S o P d

4ire2 Vf (k- R-KI, '-IP

___(_ _" I____ -"___"_ _, dk'dw' v
+ 4 e f W I(,, -- ,

m -k" v (27T

or finally (see Sec. II)

k 2c L (kw) o 0(2 r ) s(k-K -)6'(w-W) =

2 [k "Vf (k'-p,- ,V)][R'. Vf (k-k'W-W', v)]
Iv-) fo f P dvdv' - ) . (39)m 0fk' 4CLJ~(K'02) (W'-k' • _v') ( -k _v) (27r)4

Our intention was to derive an equation of the form

k [e kLck ) + Se(Kw)] o(27 )4 6(K_ p) - ()_ ,

and from this the corrected dispersion relation e' L(kw) + de' (kw) = 0. How-

ever, we have not been able to make progress along these lines. As a

hybrid solution to the problem we could use the left-hand side of Eq. (39)

and the hydrodynamic expression for the right-hand side. From Eq. (27)

we would then have

W (K~ .ki) 2  <,I n(-k' -k , co'-W ) 2 > -S 1 _j- f p 1 p p dk'dwl' (40)

k k, C (k'W) n

15



or since from the fluctuation theorem we have

< 6n(kw)1 2 > _ 
2  1

owe 47rn E L(kW)

D E' (kw)
rD E L(w) 2

Equation (40) becomes
2 2 2

1 Wp (k { P k') E ,L( ,w)i E,,L(RW,) K X D EI"L (RAn dk Idu )

k k O , , W ) j
2 IF f I ( l)E (2 7r)4

If we use the hydrodynamic formula for the fluctuations, the integration over

W' can be performed with ease. The results are interesting for the imaginary

part of 6E (kw):

6 EI" (kw)

1W () (k ' ki) EIL~i2I -. 2 W_ i
=+ 1. E1X {6(w'-W)w dk ' d4'

k k' E (k,) no -p D w'-w p p

kD -)2 (*- Lfp)Z ),,L(k, 2 O wX 2
S( )( k dl I,- + L (k', 0) pD

(z2--- 3 7VL(, )jL 2w w n p  (4a
0 (27)', o

,p p p + E"l (k', 0)] D Ik'<k z ELk 2rp 1 2  IL p[,0) j2 1 no T (42b)

k' <k D k k' E ErKk, 20)lJ o

W--w
p

where the integration or summation extends from k=0 to kDP the Debye wave

number. We note now that the fluctuations of the electric field in the plasma
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are given by

< E(kw)l 8> KT E1LR(3W E L(1w) , (43)

and therefore, the energy is

S(kwi) = < E (R.c)j> - tc E' (kw)
7Tr rW E (kw)2

Thus 2 2

6E"(kw) = (ko k, -kP (RI,2Wp) + (R'0)} (44)
k'<kD p

where the summation is for wave numbers smaller than the Debye wave number.

The imaginary part of 6E gives a measure of the attenuation of the coherent

density wave because of non-linearities in the system. Equation (44) can now
6

be compared with a similar equation quoted by Pines. In the Pines picture

this attenuation is expressed in terms of the rate of change of plasmons due

to non-linear interactions. In addition to 6E" we could also compute 6E' to

derive a correction for the B-V dispersion equation.

In conclusion, we may say that in the hydrodynamic model of a plasma

only the dispersion equation is affected by non-linearities. The indication,

however, is that in the B-V model of a plasma non-linearities introduce not

only a correction to the dispersion equation but also an attenuation.
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Appendix A: Calculation of the Density Fluctuation

If an external potential ext is included in the linearized version of

the hydrodynamic equations, we have from Eqs. (9-11)

-ic4(kw) + ik• (R) = 0 (A. 1)

_i&V (Rk) + uk O(k) + ik I ext(k.) = 0 (A. 2)
in m

-k 24(kw) + 47ren o(kw) = 0 (A. 3)

Multiplying (A. 2),by R, introducing the result in (A. D and making use of the

Poisson EquatiQn we have successively

(kw) w V (kw)

_ kw) + k Z  ()
2 2

r_ no +e k ext4c.Ae (A)o)+ -Z@xt

Thus

2 2 2: kext( )(-p) $1 k
p M~

or

p(kwo) = (e/m) k 2 ext(:kw)

p

(k) is the linear response of the hydrodynamic plasma to an external poten-

tial ext. Since ij(kw) = 6n(kRw)/n , we have further

k2 co k2
k p ext( = 1- E ext

p 1(kw) = e 6 nlk:Ro) = "k2oA -

p

18



where E 1 i- / . The current is given by
p

2
_W ____ ext(k)A.5

4r 2 2
W -W

p
-ext~k. -ext

where Et(kw) : - ike (k. From Nyquist's theorem we know that the

mean square fluctuation for j is
2

2> -K Re {i-T C (A.6)
W0 -W¢

p
and therefore

k2

< 6n(kw) 12 > k k2 <  3C) j2 >

2 2wD e

If we interpret the singularity of (A. 6) as

2
p + W {('_ p 6(}++p

2 p2 2 J 1 1 +w -o +-q'
pW - p p

we readily obtain

k2< j8n k),'jz > - KT % 8~)5~)
i(6(- p)- s + p. }(A. 7)n 2 2

0 4 re 2n

0

which integrates to

I <f InKw)12> dw = k 2Tn D

where
2 2
D = KT/4re no

is the Debye length.
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